Atomic Force Microscopy: A New Look at Pathogens

نویسندگان

  • David Alsteens
  • Audrey Beaussart
  • Sofiane El-Kirat-Chatel
  • Ruby May A. Sullan
  • Yves F. Dufrêne
چکیده

Microbial cells are highly complex and heterogeneous systems. In general, cell populations contain subgroups of cells which exhibit differences in growth rate as well as resistance to stress and drug treatment [1]. In addition, individual cells are spatially organized and heterogeneous, and this cellular heterogeneity is used to perform key functions [2]. This complexity emphasizes the need for single-cell analysis techniques in microbial research. Fluorescence imaging is a powerful tool to localize molecules in single cells [3,4], but the resolution remains limited to the wavelength of the light source. On the other hand, high-resolution images of microbial structures can be obtained by electron microscopy techniques. In particular, cryo-electron tomography—or three-dimensional (3-D) electron microscopy—provides images of whole bacterial cells, at resolutions that are one to two orders of magnitude higher than those obtained with light microscopy [5]. In the past 20 years a new form of microscopy, atomic force microscopy (AFM), has revolutionized the way researchers probe the microbial cell surface. Instead of using an incident beam, AFM measures the minute forces acting between a sharp tip and the sample [6–8]. To generate a topographic image, the tip is attached to a cantilever that bends under force and is moved in threedimensions using a piezoelectric scanner. While scanning the sample surface, cantilever’s bending is measured by a laser beam focused on the free end of the cantilever and reflected into a photodiode. Unlike other microscopy techniques, 3-D images of cells and membranes are obtained at high resolution without staining, labelling or fixation, thus in physiological conditions. AFM is much more than a surface-imaging tool in that it also measures the localization and mechanical properties of the individual cell surface molecules. In this modality, known as single-molecule force spectroscopy, the cantilever deflection is recorded as a function of the vertical displacement of the scanner (as the sample is pushed towards the tip and it retracts) [6,7]. This results in a cantilever deflection vs. scanner displacement curve, which is transformed into a force-distance curve using appropriate corrections. The characteristic adhesion force between tip and sample measured during retraction is used to probe the distribution and mechanics of single molecules, such as cell surface receptors. These novel AFM techniques complement traditional methods used to analyse microbial cell walls and provide new opportunities for understanding cell surface interactions. In this review, we provide a flavour of the various applications offered by AFM in microbiology, and we highlight some of the key breakthroughs the technique has enabled in pathogen research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Exploring mechanism of xanthate adsorption on chalcopyrite surface: An atomic force microscopy study

In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ions. The changes occurring in the surface morphology of chalcopyrite due to the collector...

متن کامل

Green Approach for Synthesis of Silver Nanoparticles from Marine Streptomyces- MS 26 and Their Antibiotic Efficacy

Antibiotic resistant pathogens pose an enormous threat to the treatment of various serious infections. To overcome this condition, a periodic replacement of the new and existing antibiotic is necessary. Antibiotics in combination with biosynthesized silver nanoparticles minimize the antibiotic doses to cure the dreaded diseases. In this study, Silver nanoparticles were bio-synthesized by extrac...

متن کامل

Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy

The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...

متن کامل

Ultra structural characteristics of methicillin resistant Staphylococcus aureus cell wall after affecting with lytic bacteriophages using atomic force microscopy

Objective(s): During the last years with increasing resistant bacteria to the most antibiotics bacteriophages are suggested as appropriate treatment option. To investigate lytic activity of bacteriophages there are indirect microbial procedures and direct methods. The present study to complement microbial procedures and investigate ultra-structural characteristics of infection bacterium-phage u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013